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We calculate the thermal resistivity and Lorenz number due to scattering of conduction elec-
trons from localized spin fluctuations, using a model appropriate for nearly-magnetic transi-

tion-metal impurities in a host of similar electronic structure.

The temperature dependence

of the Lorenz number, which is determined by the characteristic energy of the spin-fluctua-
tion excitation spectrum, is predicted for I»Fe and related alloys assuming the spin-fluctua-

tion model is applicable.

I. INTRODUCTION

We have shown! that a good account of the anom-
alous electrical resistivity of I» Fe and related al-
loys is given by the scattering of conduction elec-
trons from localized spin fluctuations (local para-
magnons). In this paper we make an analogous cal-
culation of the thermal resistivity and Lorenz
number,

The spin-fluctuation model we use was first pro-
posed by Lederer and Mills? to explain the T2 term
in the electrical resistivity of dilute PdNi alloys.
It applies to dilute transition-metal alloys with
nearly magnetic impurities in which the host and
impurity have similar electronic structure, the in-
terference between potential scattering and spin-
fluctuation scattering being neglected. The intra-
atomic Coulomb interaction U, between opposite-
spin d electrons in the host is considered to be in-
creased to a value (Uy+ 6U) in the impurity cell,
the Hamiltonian being

H=T+Uy2dynyny+ 08U 235 nyny, .

Here T is the kinetic energy and ;.= c}, Ci is the
number operator for d electrons of spin o, ¢}, and
¢;, being the creation and destruction operators for
the ith-cell Wannier orbital. The sum ¢ is taken
over all cells, while sum j is over just the impurity
cells, Lederer and Mills calculated the generalized
susceptibility response function for this Hamiltonian
in the random-phase approximation. The spectral
density for the spin fluctuations is given by the
imaginary part of this response function. )

The model should be appropriate for nearly-mag-
netic 3d impurities in 4d and 54 hosts from the
same or nearby columns. For instance, the be-
havior of Fe impurities in the 4d series Ru-Rh-Pd
changes from nonmagnetic in Ru to ferromagnetic
in Pd as the exchange enhancement in the host in-
creases. For the intermediate case of Fe impur-
ities in Rh (and in the corresponding 5d-metal Ir),
we suggested that the temperature dependence of the
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resistivity and susceptibility could be understood
in terms of strong localized spin fluctuations at the
Fe sites.

Although the model is too oversimplified to allow
quantitative predictions from first principles, it
does seem capable of accounting for the main quali-
tative features of the experimental data. We calcu-
lated! a universal curve for the electrical resistiv-
ity showing a gradual change from a 72 to a linear
dependence at temperatures around 0. 257, where
T, is the characteristic temperature of the localized
spin fluctuations in the alloy. Fitting this universal
curve gave values of T, for I»Fe (T,~30 °K), RhFe
(T,<1.5°K), and PdNi (T,~80°K). The essential
feature of the model applied to I»Fe and especially
RhFe is the small energy deduced for the localized
spin fluctuations.

This paper suggests a method of testing the lo-
calized spin-fluctuation model proposed for I»Fe and
RnFe by measuring the thermal resistivity and
Lorenz number. At low temperatures, the so-
called “vertical processes” due to inelastic scat-
tering by spin fluctuations make a large contribu-
tion to the thermal resistivity, and so reduce the
Lorenz number below the classical value, as shown
by Schriempf, Schindler, and Mills (SSM).® How-
ever, the effect of these vertical processes is
greatly reduced as the temperature increases above
Ts, since the spin fluctuations then have insufficient
energy to scatter electrons through the thermal
layer. Hence, the increase of the Lorenz number
with temperature indicates directly the order of
magnitude of the energy of the excitations producing
the inelastic scattering, i.e., gives a check on the
order of magnitude of T if the excitations are as-
sumed to be spin fluctuations.

It has been suggested® that the electrical resis-
tivity due to s-d exchange scattering from magnetic
impurities may decrease as temperature decreases
in the presence of strong nonmagnetic scattering
(in contrast to the more usual opposite behavior®),
and that R2Fe and I7Fe are Kondo systems of this
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type (although potential scattering is weak in these
alloys). If this were the case, fitting the measured
susceptibilities of these alloys® to a Curie-Weiss
law indicates that the Kondo temperatures5 (about
10 °K for RhFe and 100 °K for I¥Fe) are consider-
ably larger than the corresponding values of T if
the localized spin-fluctuation model is applicable.
The temperature dependence of the Lorenz number
might therefore provide evidence to determine
whether the Kondo model or the localized spin-
fluctuation model is more appropriate for I»Fe and
RhFe,

SSM® have made accurate measurements of the
thermal resistivity of dilute PdNi alloys below 20 °’K
and have shown that the Lorenz number for electron-
electron scattering is small, as predicted by their
calculation, which is valid for temperatures
T<<T, We extend the calculation to higher tem-
perature ranges to obtain predictions for I»Fe and
RhFe. Since the presence of lattice conductivity
reduces the accuracy of measurements of elec-
tronic thermal resistivity, we consider the effect
of lattice conductivity on the separation of thermal
resistivity components, with reference to the PdNi
data of SSM. 3

We mention that a linear T term in the thermal
resistivity (corresponding to a 72 term in the elec-
trical resistivity) has been observed at low tem-
peratures in several transition metals’ besides
PdNi alloys: It is found that the Lorenz number for
electron-electron scattering is reduced below the
classical Sommerfeld value. To account for this
behavior, several calculations have been made of
the thermal resistivity and Lorenz number for
electron-electron scattering,® and in particular for
scattering from uniform band paramagnons at low
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FIG. 1. Universal curves for the thermal resistivity

due to scattering by localized spin fluctuations, for the
horizontal (W,) and vertical (W,) components of scatter-
ing. The total localized spin-fluctuation resistivity W
is shown for the case a;/az=1.
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temperatures®'%; the relation of these calculations
to the present localized spin-fluctuation model has
been discussed in some detail by SSM.® The mean-
ing of “vertical” and “horizontal” processes for
inelastic scattering from spin fluctuations has also
been fully discussed by SSM. ®

II. LORENZ NUMBER

The calculation of the thermal resistivity W,, due
to scattering of conduction electrons from d-elec-
tron spin-density fluctuations localized at impurity
sites is given in the Appendix. We find that the
normalized thermal resistivity W for spin-fluctua-
tion scattering is

W= W,+ %(%; - %) W, . )
The integrals W, and W, are defined by (A20) and
plotted in Fig. 1 as a function of normalized tem-
perature T=T/T,, where kT, is the energy of the
peak in the spin-fluctuation excitation spectrum.
Thus, for thermal resistivity there are two uni-
versal curves, one arising from “horizontal” pro-
cesses (W,) and the other from “vertical” processes
(Wy).

In a vertical process, which contributes to the
thermal but not the electrical resistivity, the en-
ergy of a conduction electron is changed by inelas-
tic scattering from a spin fluctuation. For in-
stance, the heat current carried by a “hot” electron
is reversed if it is scattered through the Fermi
surface to become a “cold” electron, although the
electrical current is not significantly changed unless
the direction of motion of the electron is changed,
i.e., unless there is significant horizontal scatter-
ing. The spin-fluctuation thermal resistivity is the
sum of the vertical and horizontal components,
whose relative magnitude is rather difficult to pre-
dict since it is determined by the value of the ratio
a,/a, (defined in the Appendix) which depends on
the angular distribution of scattering.

Since -only the horizontal component of scattering
qontributes to electrical resistivity, we see that

;): Wzi‘ ) (2)

where p is the universal curve for the electrical
resistivity! due to localized spin fluctuations.
Taking the ratio of electrical resistivity p,, and
thermal resistivity W,, due to scattering by spin
fluctuations, we obtain the Lorenz number L,
for localized spin-fluctuation scattering
-1

I

&)

where L, is the classical Sommerfeld value of the
Lorenz number:

o Pu_ g B _ (a1
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FIG. 2. Lorenz number L, for scattering due to localized
spin fluctuations.
Ly=1%%/36% . @

Here kj is Boltzmann’s constant and e the electronic
charge. At low temperatures

L, (T -0)=Ly5(3+12a,/a,)™" , (5)

which is the temperature-independent Lorenz num-
ber calculated by SSM, 3

Two examples of L, for different values of the
ratio a,/a; are shown in Fig. 2. From (2), p, and
the horizontal scattering term of W,, are related at
all temperatures by the classical Lorenz number
L,, so the deviation of L, from the value L, arises
from the presence of the vertical scattering com-
ponent. Hence L, - L, at high temperatures where
the contribution of the vertical component vfg tends
to zero. The horizontal resistivity component has
its largest magnitude for the case of uniform angular
scattering, in which case a;/a3=0.5, according to
(A10) below. Hence, the curve for a,/a;=0.5 in
Fig. 2 represents the upper bound of L,, in our
model.

The variation with temperature of the reduction
of L, below L, indicates the energy of the excita-
tions involved in the inelastic scattering processes
which give rise to the vertical component of thermal
resistivity. Comparison of experimental measure-
ments of L, with Fig. 2 should indicate the energy
kpT of the spin-fluctuation excitation spectrum.

III. SEPARATION OF RESISTIVITY COMPONENTS

Making the usual assumption that the different
components of electronic thermal conductivity are
additive, and neglecting the lattice conductivity,
we obtain the apparent resistivity due to localized
spin fluctuations as

W»:= Wlmp - Clmp/T= Walloy_ Whost - Cimp/T s (6)

A. B. KAISER 3

where W,;,,, and W, ., are the measured thermal
resistivities in the alloy and in the host, and
Cim,/T is the thermal resistivity due to nonmag-
netic scattering by impurities. As for the elec-
trical resistivity, it is assumed that the electron-
phonon resistivity component is the same in the
host metal and in the alloys.

Figure 3 shows the data of SSM® for PdNi alloys
replotted to illustrate the method of analysis sug-
gested by (6). We plot W, T rather than W, so that
the nonmagnetic component is a constant C;,, ,
which can easily be subtracted off. The data are
consistent with this method of analysis, since W,
is approximately linear in impurity concentration
¢, and in temperature below 15 °K (as expected for
PdNi since the electrical resistivity data®! suggest
T, ~80 °K).

The presence of lattice conductivity will reduce
W,. At low temperatures, the lattice conductivity
is expected!! to vary as T2

(Wy)'=DT?, )

where D is a constant. Fletcher and Greig!? have
deduced values of (Wy,,)™ in PdAg alloys with Ag
concentrations from 5% to 20%. These measure-
ments suggest!® that D for dilute Pd alloys is of the
order of 3 X107 to 10 (W/cm)/ °K®, The lattice
conductivity in dilute PfAu and PtIr alloys is sim-
ilar.!?

The total thermal resistivity W in an alloy or host
with electronic resistivity W,, and lattice conduc-
tivity (7) is

W=W,,(1+ W, DT?) . (8)

Figure 4 shows the effect of lattice conductivity
reducing the apparent resistivity W,,f deduced from
(6) below the actual spin-fluctuation resistivity W,
(taken as linear in T) for parameter values corre-
sponding approximately to PdNi, with D=10"
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FIG. 3. Thermal resistivity component W, for PdNi

alloys derived from the data of SSM?® using (6).
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FIG. 4. Apparent thermal resistivity W, for localized
spin-fluctuation scattering, showing the effect for differ-
ent impurity concentrations ¢ of a lattice conductivity (7)
with D=10"4%W/cm)/°K3. As an approximation for PdNi
below 20°K, W, istakenas Wy =(1.1+13.8¢)/T
+(3.0+13.5¢) X107 T'+2. 55 % 10~4 72 cm °’K/W, where T
is measured in °K and ¢ in atomic percent.

(W/cm)/ °K3 taken as the same in pure Pd and the
alloys.

The effect of lattice conductivity is roughly pro-
portional to D and to impurity concentration c.
Assuming that the addition of impurities affects the
electronic conductivity much more strongly than
the lattice conductivity, the magnitude of the reduc-
tion of W,,/c by the lattice conductivity will increase
as c increases (although taking C,,, as the inter-
cept on a plot of W, T vs T2 will tend to reduce this
c dependence),

Since the PdNi data in Fig. 3 show little concen-
tration dependence, it is unlikely that the reduction
in slope of W, T/c vs T? due to lattice conductivity
is more than 10%. Taking W,/c=1.32X1072T
(cm/W)/% for T<15°K, and by an analogous analy-
sis of electrical resistivity data® p,/c=1.45
X10*72 (uS cm/ °K?) /%, we get for PdNi when
T<T,:

L,,.=1.1<jg' ;) X10%® V2/°K? , ©)

so that L,,/L, is between 0. 35 and 0.50. To ob-
serve the increase in L,, predicted by our calcula-
tion, it would be necessary to extend the PdNi mea-
surements to higher temperatures (of the order

of T,).

The value of L,, in (9) is similar to the value of
the Lorenz number for all electron-electron scat-
tering (i.e., including scattering by spin fluctua-
tions in the host Pd) obtained by SSM, ® using a
rather different method of analysis, for each of the
PdNi alloys investigated. In contrast, the Lorenz
numbers for nonmagnetic scattering from impurities

LOCALIZED SPIN FLUCTUATIONS IN NEARLY-MAGNETIC ...
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were found® to be within 2% of the classical
value L.

IV. DISCUSSION

We have extended the calculation by SSM® of the
Lorenz number L, for spin-fluctuation scattering
to temperatures of order 7, and larger. The curves
in Fig. 2 illustrate how the temperature dependence
of L, depends on T, and on the magnitude of the
reduction in L,. This reduction of L, below L, is
caused by the contribution of vertical processes to
the thermal resistivity and its magnitude depends
on the angular distribution of scattering, which
cannot be reliably predicted by our isotropic model.
However, if the magnitude of L, as T -0 is deter-
mined experimentally, the increase of L, as T
increases indicates the value of T, for localized
spin fluctuations in the alloy.

For IrFe the electrical resistivity data'* indicate
that T, ~ 30 °K, so this alloy should be suitable for
checking the predicted increase of L, with T. For
RhFe the T2 dependence of electrical resistivity
was not observed, !° because the value of T, is ap-
parently much smaller (below 1.5 °K), so the linear
T dependence of W,, may not be observable, We
can make the interesting prediction that L, should
be approximately equal to L, down to very low
temperatures for RiFe if the spin-fluctuation model
is applicable.

Fortunately, the lattice conductivity in the tran-
sition metals Pd and Pt is roughly an order of mag-
nitude smaller than in the noble metals. > It should
be possible to obtain useful data for L, in I»Fe
and RhFe if the lattice conductivity in these alloys
is no larger than in the PdNi alloys® discussed in
Sec. III. To identify the effects of lattice conduc-
tivity on W,, it is desirable to make measurements
at several different impurity concentrations. An-
other possible complication is deviations from ad-
ditivity of the different thermal resistivity com-
ponents, *® although the constancy of the Lorenz
number for the PdNi data of SSM® suggests that, at
least for this case, such deviations are not too
significant.

We conclude that measuring the Lorenz number
L, for IrFe and RhFe should show whether the ex-
citations producing the resistivities p,, and W,, are
consistent with the low-energy localized spin fluc-
tuations postulated’ to explain the temperature
dependence of p,,.
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APPENDIX

In this Appendix we use the standard variational
procedure®!” to calculate the thermal resistivity
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W,, due to scattering of conduction electrons from
localized spin fluctuations. To represent this scat-
tering process we employ a simple isotropic two-
band model, one band (s-like) contributing to the
conductivity and the other (d-like) giving rise to
magnetic properties. Then the thermal resistivity
W, is
2
W= ety ) f e 1€l - ley)]

2kp - -
X[ qdq Q(k~k') (ke + €€ d?) , (A1)

where Q(k -k’) is the scattering rate from filled
conduction-electron state €, to empty state €,.,
fle,) is the Fermi-Dirac function, kj is the Fermi
wave vector for the conduction band, ¢ is the mag-
nitude of the change q in the wave vector upon scat-
tering:

- >y >

q=k'-k, (A2)
and w is the change in energy:
W=€yp —€, . (A3)

As for electrical resistivity,! (A1) is an average
over initial and final states k and k' of the scattering
rate Q(T{ -—ﬁ'), but because of the contribution of
vertical processes depending on energy change w,
the weighting factor for @(k ~k’) is not simply the
change in forward momentum (which is proportional
to ¢%).

Expressing Q(k~k’) in terms of the spectral
density A(g, w) for localized spin fluctuations, !*2
we obtain :

-
Wam 22 38 [ttt @00
0

+ 0L ()A (@) + L (@A, (@)], (Ad)

where B= (k5 T)!, and n(w) is the Bose function. As
before, ! p, is

po_:(JN(iE))z v _m

2
4 n ne“tp

, (A5)

where J is the coupling constant for scattering of
conduction electrons from localized spin fluctua-
tions, v and # are the number of atoms and conduc-
tion electrons, respectively, per unit volume,
N(ep) is the density of conduction electrons at the
Fermi energy €, m is their effective mass, and
Tp="/€p. The A,(w) is the weighted average over
wave vector of the spectral density:

A, (@)= A/kFY) [#Fdqq"| Fg)|*Alg, @), (A6)
where F(g) is a form factor for the impurity d or-
bital, and

A. B. KAISER 3
L()= [ 7 de, fle)[1 - fley+ 0)ej . @A)
I(w) is easily evaluated for kyT <€y, giving
e 38 [ g,
"L, J,
(Erody @)+ ST () - r)tetay@) 0

-1 -e")

We can give a physical explanation of the three
terms in this expression. The first term, which
includes in ZS (w). the weighting factor q2 for angular
scattering, represents the horizontal component of
scattering, and so is the same as in the expression
for electrical resistivity. The second term rep-
resents the vertical scattering component, having
an additional energy-weighting factor of w? but not
including the qZ factor in Z,(w). The third term is a
negative cross term having both the angular- and
energy-weighting factors ¢° and w?, which arises
as follows (cf. Ziman,'” p. 390). In a scattering
process in which the vertical and horizontal com-
ponents are both large, the electron is changed
from, say, a hot electron moving in one direction
to a cold electron moving in the opposite direction,
so there is little net effect on the heat current.
Hence, the total resistivity is less than the sum of
the vertical and horizontal components acting sep-
arately. Sincethe cross term has the same tem-
perature dependence as the second term in (A8),
we regard it as part of the vertical scattering
component,

We introduce now the explicit form of the spec-
tral density for localized spin fluctuations!

_ w

A,(w)=a, 508 (A9)
where a, is a constant independent of energy

- X
a,=2cadu (,, + e (A10)
n XZR aou XI)

and

G=w/kyTs= abUX, . (A11)

8U is the increase in the intra-atomic exchange
interaction in the impurity cell, and « is the sus-
ceptibility enhancement factor for localized spin
fluctuations:

a=(1-08Uxg)™"! (A12)

and
Xzr= (L/ERT) joz"" dq ¢"| F(g)|*x% | (A13)
Xar= W/REYD [PF dgq"| F@)|*2xex,,  (A14)
Xr=(1/N)2; Xz, (A15)
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32]= (I/N)Ea Xr»

where x and x; are the real and imaginary parts

of the generalized susceptibility X(g, w) in the host

metal, and N is the total number of atomic cells.
Defining dimensionless variables

(A16)

‘TV= WmLo/pokBas 5 (A17)

T=T/Ts, (A18)
and substituting in (A8), we get

o 3(a 1\ -

W= W,+ F(i - E>W4 , (A19)
where

©/T ~n
AR e . (A20)
T J, (®/T = 1)2(1+ @3

Taking the limit 7 -0, we obtain a linear depen-
dence on T corresponding to the 7% dependence of
the electrical resistivity in this limit,

R IO

which is equivalent to the result of SSM3. In the

limit 7' — o,
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- = T T% 3 (a 1 om P
W(T‘“>=§+‘T‘%?<;§'§>fo e
(A22)

Hence, at high temperatures the horizontal com-
ponent gives a constant resistivity, while the ver-
tical component goes to zero as T-%. Note that the
general expression (A9) for the spectral density
shape becomes inaccurate for large energies, es-
pecially for n=1. We introduce a cutoff to prevent
an unphysical infinity in the integral of (A22), in
which the w? weighting factor for vertical processes
enhances the contribution of higher energies. The
magnitude of the vertical-process term above T
as it decreases towards zero depends on the shape
of the high-energy tail of the excitation spectrum
and cannot be represented by a universal curve.

At high temperatures the local enhancement factor
a decreases, leading to a decrease of electrical
resistivity below the linear law.! Since a, defined
by (A10) is roughly proportional to @, from (A17),
W, will reflect directly the decrease in @, i.e.,
the normalizing factor for W will decrease at high
temperatures. Thus, the temperature dependence
of W, is rather complex. After a linear increase
with T at low temperatures, W, becomes more or
less constant above 3 T; then, at still highter tem-
peratures it decreases as o decreases.
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